Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Proc Natl Acad Sci U S A ; 120(11): e2220272120, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2259802

ABSTRACT

T cells are present in early stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and play a major role in disease outcome and long-lasting immunity. Nasal administration of a fully human anti-CD3 monoclonal antibody (Foralumab) reduced lung inflammation as well as serum IL-6 and C-reactive protein in moderate cases of COVID-19. Using serum proteomics and RNA-sequencing, we investigated the immune changes in patients treated with nasal Foralumab. In a randomized trial, mild to moderate COVID-19 outpatients received nasal Foralumab (100 µg/d) given for 10 consecutive days and were compared to patients that did not receive Foralumab. We found that naïve-like T cells were increased in Foralumab-treated subjects and NGK7+ effector T cells were reduced. CCL5, IL32, CST7, GZMH, GZMB, GZMA, PRF1, and CCL4 gene expression were downregulated in T cells and CASP1 was downregulated in T cells, monocytes, and B cells in subjects treated with Foralumab. In addition to the downregulation of effector features, an increase in TGFB1 gene expression in cell types with known effector function was observed in Foralumab-treated subjects. We also found increased expression of GTP-binding gene GIMAP7 in subjects treated with Foralumab. Rho/ROCK1, a downstream pathway of GTPases signaling was downregulated in Foralumab-treated individuals. TGFB1, GIMAP7, and NKG7 transcriptomic changes observed in Foralumab-treated COVID-19 subjects were also observed in healthy volunteers, MS subjects, and mice treated with nasal anti-CD3. Our findings demonstrate that nasal Foralumab modulates the inflammatory response in COVID-19 and provides a novel avenue to treat the disease.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Humans , Mice , Administration, Intranasal , Antibodies, Monoclonal/therapeutic use , GTP-Binding Proteins , Membrane Proteins , rho-Associated Kinases , SARS-CoV-2 , T-Lymphocytes , Transforming Growth Factor beta1/genetics
2.
Nat Immunol ; 23(4): 632-642, 2022 04.
Article in English | MEDLINE | ID: covidwho-1751737

ABSTRACT

Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.


Subject(s)
COVID-19 , Interferon Type I , Gene Regulatory Networks , Humans , Interferon Type I/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/genetics , SARS-CoV-2 , T-Lymphocytes
3.
bioRxiv ; 2020 Oct 31.
Article in English | MEDLINE | ID: covidwho-915987

ABSTRACT

While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. Type 1 interferon (IFN-I) modulates T cell immunity in viral infection, autoimmunity, and cancer, and may facilitate induction of T cell exhaustion in chronic viral infection 1,2 . Here we show that IFN-I regulates co-inhibitory receptors expression on human T cells, inducing PD-1/TIM-3/LAG-3 while surprisingly inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses enabled the construction of dynamic transcriptional regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors on human primary T cells revealed both canonical and non-canonical IFN-I transcriptional regulators, and identified unique regulators that control expression of co-inhibitory receptors. To provide direct in vivo evidence for the role of IFN-I on co-inhibitory receptors, we then performed single cell RNA-sequencing in subjects infected with SARS-CoV-2, where viral load was strongly associated with T cell IFN-I signatures. We found that the dynamic IFN-I response in vitro closely mirrored T cell features with acute IFN-I linked viral infection, with high LAG3 and decreased TIGIT expression. Finally, our gene regulatory network identified SP140 as a key regulator for differential LAG3 and TIGIT expression. The construction of co-inhibitory regulatory networks induced by IFN-I with identification of unique transcription factors controlling their expression may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and autoimmunity.

SELECTION OF CITATIONS
SEARCH DETAIL